
University of Claude Bernard Lyon 1
Institut de Science Financière et d’Assurances (I.S.F.A)

Student project
Large Language Models applied to

the insurance domain

Authors: Jérémy Liabeuf, Esther Lasly Gatoni,
Mohamad Jalloul

Field of education: Master 1 Econometrics and Statistics

Supervisor: Mr. Couloumy

Year 2022-2023

Quick explanation of our subject

Large Language Models (LLMs) are special software programs typically created
using the Transformer architecture and containing several parameters. They
are also large language models used in insurance companies.
We will show a comparison of language models such as GPT-2, Bloom, and
Llama, and identify the limitations of these large language models. Then we
will train our model using GPT-2 on different sample results as a use case in
insurance.

ISFA - Year : 2022-2023 M1ES

Summary
I) Introduction 1

1) What is a LLM? . 1
a) Definition . 1
b) Why do we use it in insurance? 1

2) Math behind LLMs . 1

II) Comparison and limits of LLMs 5
1) GPT-2 vs Bloom . 5

a) Model Architecture . 5
b) Pre-trained Knowledge . 6
c) Fine-tuning Capabilities 6
d) Inference Speed and Memory Requirements 6
e) Community and Support 6

2) Llama vs GPT-2 . 6
a) Architecture: . 6
b) Data requirements: . 6
c) Adaptability: . 7

3) Limits of LLM and how to overcome them 7
a) Generalization and lack of domain-specific knowledge . . 8
b) Data quality and bias . 9
c) Lack of interpretability and explainability 9
d) Ethical considerations. 9
e) Computational resources 10

III) Our custom-train model using GPT-2 12
1) Base of our project . 12

a) The workspace . 12
b) The model . 12

2) Starting point . 13
a) Installation . 13
b) Sample to fine-tune . 14

3) Fine-tuning our sample . 14
a) Initialization . 14
b) Generate a text with our checkpoint 16

4) Results of the different samples 17
a) Sample 1: First chapter of Harry Potter and the Sorcerer’s

stone . 17
b) Sample 2: The entire book of Harry Potter and the Sor-

cerer’s stone . 19
c) Sample 3: Workiva Inc.’s financial report from 2021 . . . 21

5) Issues with the process . 26

IV) Conclusion 27

Summary

ISFA - Year 2022-2023 M1ES - LLMs project

I) Introduction

1) What is a LLM?
a) Definition

Large Language Models (LLMs) are special software programs that computers
can use to understand language. They’re usually made using something called
the Transformer architecture, and they’re trained on massive amounts of text
that people have written. By doing this, they learn how language works and
can do things like come up with new words and sentences, or translate text from
one language to another. Some of the most powerful LLMs have billions and
billions of "parameters," which are just tiny pieces of information that help the
computer understand language better. They work by trying to guess what word
should come next in a sentence based on the words that came before it.

b) Why do we use it in insurance?

In the insurance field, LLMs can help simplify and automate processes, leading
to better efficiency, reduced costs, and happier customers.

Large language models (LLMs) can be very useful for insurance companies
in several ways. First, they can help them provide better customer service by
assisting with inquiries and routing them to the appropriate service or agent
for prompt resolution. Second, LLMs can help streamline claims processing
by analyzing large amounts of data and improving efficiency. Finally, insurers
can benefit from LLMs for risk assessment, as they can better predict risk by
analyzing huge amounts of data. Overall, LLMs are a valuable tool for insurance
companies, offering improved customer service, streamlined claims processing,
and better risk assessment.

Let’s dive into the math behind these large language models

2) Math behind LLMs
Large language models, are based on a type of neural network called the Trans-
former architecture. The math behind these models primarily involves linear
algebra, probability theory, and calculus. Here’s a detailed explanation of the
key concepts and components involved in these models:

1. Tokenization
Text data is transformed into numerical values called tokens by utilizing
a pre-defined vocabulary. Each of these tokens corresponds to a word
or sub-word present in the text. The tokenizer is an essential piece of
technology utilized in language model training that helps machine learning
systems better understand human language. Taking into account a fixed
limit for the number of tokens, a subword tokenizer compresses letters
into meaningful words utilizing statistical models to achieve an optimal
compression rate. The tokenizer must be capable of compressing the entire

1

ISFA - Year 2022-2023 M1ES - LLMs project

English language into a vocabulary of about 50,000 tokens. To perform
this compression task, the tokenizer constructs cards one by one from
token chains (a sequence of characters) to token IDs (a unique number).
The tokenizer also includes punctuation tokens such as commas, periods,
and spaces to ensure that every form of English language on the internet
is symbolized effectively. Essentially, the tokenizer scrutinizes a string of
text, sets it apart into token chains, and then converts it into a list of
token IDs.

2. Embeddings
To help a computer understand the meaning and relationships between
words, we convert the words into a set of continuous numbers. This
method of mapping words is done by using an integration matrix, which al-
lows the computer to interpret the meaning behind the words. We can use
a transformer like GPT-2 or Meta OPT to convert the word IDs into vector
tokens. Depending on the model, the state vector size may vary, ranging
from 768 to 4096. Essentially, the integration matrix can be thought of as
a list of vector tokens, with each token corresponding to a particular word.
In order to obtain the right symbolic vector, we simply use the token ID.

3. Positional encoding
Since the Transformer architecture doesn’t have any inherent understand-
ing of the order of tokens, positional encoding is added to the input em-
beddings. This helps the model understand the position of each word in
a sequence.
Transformers use an intelligent positional coding, where each position or
index is mapped to a vector. Therefore, the output of the positional cod-
ing layer is a matrix, where each row in the matrix represents a coded
object in the sequence summed with its position information.
The encoding is typically a sinusoidal function, which is added element-
wise to the input embeddings.
This sinusoidal function is given by sinus and cosinus functions of variable
frequencies:

P (k, 2i) = sin

(
k

n
2i
d

)

P (k, 2i+ 1) = cos

(
k

n
2i
d

)
4. Self-attention mechanism

In the Transformer architecture, there’s this really interesting part called
the self-attention mechanism. It basically helps the model to figure out
which parts of the input sequence are more important and then it adjusts

2

ISFA - Year 2022-2023 M1ES - LLMs project

them to create the final output. This is a really important feature in tasks
that involve language processing because a word’s meaning can change de-
pending on its context in the sentence or the document. The Transformer
uses a type of self-attention called scale scalar product attention to achieve
this, which is integrated into its architecture. In this self-attention, there
are three learnable matrices: Q, K, and V. They’re computed by multi-
plying the input embeddings with their respective weight matrices (Wq,
Wk, and Wv).

5. Scaled dot-product attention
To calculate the attention scores between each pair of words in a sequence,
we use the dot product of their query and key vectors. After that, we
scale the result by the square root of the dimension of the key vectors
(dk). These scores are then run through the softmax function to obtain
a probability distribution. We use this distribution to weight the value
vectors, and then sum the weighted value vectors for the final output..
To calculate the attention of the scaled point product this is done in 4
steps:

• Calculate the alignment scores by multiplying all the queries packed
in the Q matrix, with the keys in the K matrix.

• Scale of each alignment score by 1√
dk

• Another escalation process by applying a maximum operation in or-
der to obtain a set of weights.

• Finally, apply the weight resulting from the values of the matrix V
of dimension.

6. Multi-head attention
The Transformer architecture uses multiple attention heads instead of a
single one for capturing different relationships between words. To obtain
the final multi-head attention output, linear projections of queries, keys,
and values are calculated with weight matrices. Then, a unique attention
feature is applied to each head, which involves multiplying the queries and
key matrices, scaling and softmax operations, and weighting the value ma-
trix. The resulting outputs from each head are concatenated and passed
through a linear layer to generate the final result.

7. Feed-forward neural network
The output of the multi-head attention goes through a feed-forward neu-
ral network that consists of two linear layers separated by an activation
function, which is further processed by position. However, the standard
MLP and its derivatives have a drawback in that there is a strong relation-
ship between the connection graph and the weight network. The graph is

3

ISFA - Year 2022-2023 M1ES - LLMs project

only used to allow communication between neurons, but the weights are
connected to the idea of control structure, which helps in modifying the
local computation of each neuron during training.

8. Residual connections and layer normalization
In the Transformer architecture, there are two features that are used for
training and performance enhancement. Residual connections and layer
normalization are used to mitigate the problem of vanishing gradient and
enhance the training process. For each layer in the model, normalization
of the output is done, which helps with stable learning. Also, a residual
connection is added, which allows the input to be directly passed to the
output. It helps in making the model learn which parts of input are crucial.
By repeating these components several times, a deep neural network is
constructed. It allows the model to process extended text sequences and
create better outputs for various language tasks like query answering, text
generation, and translation.

9. Stacking layers
The Transformer architecture has various encoder and decoder layers that
are stacked on top of each other. The encoder layers have a multi-head at-
tention mechanism, followed by a position-wise FFN. On the other hand,
each decoder layer includes an extra multi-head attention layer that fo-
cuses on the encoder’s output.

10. Output layer
The final output from the top decoder layer goes through a linear layer and
a softmax layer, resulting in a probability distribution over the vocabulary.
The word with the highest probability is then selected as the prediction.

Following our discussion of the foundations and capabilities of large language
models, a comparative examination of these models is required to better appre-
ciate their strengths and drawbacks. In the following part, we will go over the
comparative advantages, disadvantages, and performance constraints of various
large language models in further detail.

4

ISFA - Year 2022-2023 M1ES - LLMs project

II) Comparison and limits of LLMs

Table 1: Comparison of GPT-2, Bloom, and Llama
Aspect GPT-2 Bloom Llama

Model Architecture Large-scale Efficient Flexible
Transformer-based Transformer choice

Pre-trained Knowledge Yes Yes N/A

Fine-tuning Capabilities Yes Yes Yes

Inference Speed Slower Faster Depends
Memory Requirements Higher Lower Depends

Community and Support OpenAI Hugging Face Hugging Face

Recommendation Bloom GPT-2
for Insurance

1) GPT-2 vs Bloom
Have you heard of Hugging Face Bloom and OpenAI GPT-2? They are both
top-of-the-line models used in natural language processing, but they have their
own unique features in terms of how they’re built, what they can do, and where
they are used. Let’s take a detailed look at how these two models compare.

a) Model Architecture

1. Hugging Face Bloom:
Bloom is a really cool type of Transformer that was made by Hugging
Face. It helps the Transformer use less memory and be faster, but still
work just as well. They did this by using layer pruning, weight shar-
ing, and quantization. The people who made BLOOM trained it using
a combination of two things: Megatron-DeepSpeed and Megatron-LM.
Megatron-DeepSpeed is a library that helps people with deep learning
make their work happen faster, and Megatron-LM is a transformer model
idea that was made by an awesome team at NVIDIA. The people on the
DeepSpeed team used something called ZeRO partitioning and pipeline
parallelism to implement BLOOM.

2. OpenAI GPT-2:
GPT-2, which stands for Generative Pre-trained Transformer 2, was cre-
ated by OpenAI as a language model. GPT-2 has different sizes from
117M to 1.5B parameters. The larger models have better performance
but require more computational resources. This model was a precursor to
GPT-3 and GPT-4, which are more advanced.

5

ISFA - Year 2022-2023 M1ES - LLMs project

b) Pre-trained Knowledge

Both Bloom and GPT-2 are trained on lots of texts to learn how to use words,
understand grammar, and some real facts. However, what they are trained on
and how much they learn can be different.

c) Fine-tuning Capabilities

Fine-tuning Bloom and GPT-2 models on specific industry datasets can help
them perform better on tasks like insurance. This is achieved by refining the
models’ general pre-trained knowledge to fit the particularities of the industry
or use-case at hand.

d) Inference Speed and Memory Requirements

Compared to older Transformer models like the GPT-2, Bloom is intended to be
more memory- and inference-speed-efficient. When models are deployed in pro-
duction, especially in contexts with limited resources or when real-time answers
are required, this can be a substantial advantage.

e) Community and Support

Hugging Face and OpenAI both have strong communities and extensive re-
sources, including tutorials, example projects, and pre-trained models, which
can be helpful when customizing and implementing these models for specific
tasks.

2) Llama vs GPT-2
a) Architecture:

An open-source framework called Llama (Language Model as a Service) is used
to develop and distribute unique language models. It is based on Hugging Face’s
Transformers library and works with a number of architectures, including BERT,
RoBERTa, and GPT-2. Because of this, there are more options for architecture.

b) Data requirements:

You can use Llama to refine pre-trained models on your particular dataset or
create a bespoke model from scratch. You can pick an appropriate architecture
and train or fine-tune the model on your domain-specific dataset for insurance
applications.

6

ISFA - Year 2022-2023 M1ES - LLMs project

c) Adaptability:

Llama is a good option for a variety of applications, including insurance, be-
cause it can be customized for training and deployment. Depending on the
training data and architecture selected, it can be used for tasks including text
categorization, named entity recognition, and sentiment analysis.

Both GPT-2 and Llama can be used for custom training in the insurance
industry. Choosing the best option for your specific use case will depend on
your requirements and available resources.

Key points to consider when making your decision
GPT-2:

• Powerful pre-trained model with a larger number of parameters.

• Highly adaptable and can be fine-tuned for various tasks, such as text
classification, sentiment analysis, and summarization.

• More resource-intensive due to its model size.

Llama:

• Flexible choice of architectures, as it is built on top of Hugging Face’s
Transformers library.

• Designed specifically for custom training and deployment.

• Supports a variety of tasks, depending on the chosen architecture and
training data.

GPT-2 may be a better option if you have a sizable dataset and sufficient
computing capacity because it is a potent pre-trained model that can be cus-
tomized for different jobs. It has been demonstrated to be effective for a variety
of natural language processing tasks, making it a good option for applications
involving insurance.

Llama, on the other hand, might be a better alternative if you value flexi-
bility in architectural selection and need a solution that is intended expressly
for individualized training and deployment. With Llama, you may select the
architecture that is best for your use case and train or improve the model using
data that is specific to your domain.

3) Limits of LLM and how to overcome them
Large language models can have huge implications for the future of language
processing. These models need to understand context and word meaning and
generate accurate and complex responses to user queries, and LLMs perform a
wide range of tasks.
However, they have certain limitations that can affect their performance and
usefulness, especially in specialized areas such as insurance.

7

ISFA - Year 2022-2023 M1ES - LLMs project

1. Generalization and lack of domain-specific knowledge.

2. Data quality and bias.

3. Lack of interpretability and explainability.

4. Ethical considerations.

5. Computational resources.

Let’s dive into each of these limitations one by one.
Here, we will focus on the first limitation mentioned earlier: generalization

and lack of domain-specific knowledge.

a) Generalization and lack of domain-specific knowledge

Large language models are trained on large and diverse data sets, allowing them
to learn and understand a variety of topics, including common sense. However,
these models may not have comprehensive or accurate knowledge in specific
areas such as insurance, advanced scientific topics, or legal issues. For example,
an LLM such as GPT-2 or Bloom’s can generate a general description of how
car insurance works, but may struggle with more specialized concepts such as
actuarial tables, risk assessment algorithms, or reinsurance principles.

Example:

Imagine you ask an LLM a question related to the insurance domain:

Question: Can you explain the difference between experience rating
and community rating in health insurance premium pricing?

An LLM with a lack of domain-specific knowledge might provide a
vague or incomplete answer.

Answer: Experience rating and community rating are two methods
used to determine health insurance premiums. Experience rating
considers the individual’s health history, while community rating
takes into account the health status of the entire community.

Although this response is partially correct, it doesn’t show a clear under-
standing of the subject matter as a whole. When insurance companies calculate
premiums for individuals or groups, they consider their claim history. However,
when it comes to Community Ratings, premiums are based on the average cost
of care for the entire community, regardless of the age, gender, and health status
of the individuals. To overcome this drawback, LLM can be improved by using
organized datasets. This approach helps the model gain more precise knowledge
and come up with better responses. Nevertheless, maintaining the data set’s
quality is essential to avoid inaccuracies. Moving on to the second drawback,
let’s discuss data quality and bias in more detail.

8

ISFA - Year 2022-2023 M1ES - LLMs project

b) Data quality and bias

Large language models (LLM) are trained using large amounts of textual data
collected from various sources. The quality and variety of the training data have
a direct impact on the model’s performance. If there are biases or inaccuracies
in the training data, the results can be problematic, leading to erroneous out-
puts, particularly in fields such as insurance.

Various methods can be employed to reduce bias in LLM, including data
preprocessing to review and preprocess the training data to identify and remove
biased content, post-mortem analysis to analyze the output produced by the
model to identify and correct outliers, and algorithmic fairness interventions
using techniques such as adversarial training or fairness-aware machine learning
algorithms to reduce the model output bias.

Therefore, ongoing monitoring and evaluation of LLM results are essential to
maintain fairness, inclusiveness, and accuracy, particularly in industries such as
insurance, where biased decisions can significantly affect individuals or groups.

lets move on to our third main limitation.

c) Lack of interpretability and explainability

Large language models are really complicated pieces of technology with millions
or billions of parameters that are used to make decisions. However, it can be
hard to understand why they choose certain outcomes. Essentially, these models
are like magic - they work, but we don’t know how. In certain fields, such as
insurance, it’s important for people to understand why certain decisions are
made since there can be serious consequences for customers, regulators, and
business owners. Unfortunately, it’s difficult to explain these decisions when
using large language models.

An insurance company may use a system to determine the premium an
individual will pay. This system utilizes a Risk Score, which can result in
higher premiums. However, if the decision is questioned, the company may
struggle to provide a clear explanation due to the complexity of the system. To
make it simpler, organizations can use more understandable models like decision
trees and logistic regression. They can also use an approach where human
experts review and provide explanations for decisions made by the system. By
combining these approaches with the original system, organizations can balance
the power of the system while maintaining transparency and accountability.

Lets move on to our forth limitation.

d) Ethical considerations.

The use of big computer models in different areas, such as the insurance industry,
raises ethical issues that must be taken into account. Some of the principal
ethical problems that come with using these models include:

9

ISFA - Year 2022-2023 M1ES - LLMs project

1. Unintentional prejudice and discrimination: As we have mentioned before,
these models can unknowingly learn and transmit biases that are present
in the data used to train them. This can lead to results that are unjust,
offensive, or discriminatory. In the context of insurance, biased decisions
can seriously impact people’s ability to get coverage or how much they
have to pay in premiums.

2. Privacy concerns: These models can also inadvertently store and reveal
personal information and other sensitive data that are present in the data
used to train them. In the context of insurance, sharing sensitive cus-
tomer information or trade secrets can have serious legal and financial
consequences.

3. Misleading information and manipulation: These models can create text
that is so convincing that it may be mistakenly believed to be accurate,
even if it is completely false. In the insurance industry, misinformation can
damage a company’s reputation, confuse customers, or create confusion
in the market.

Example:
Suppose an insurance company uses an LLM to generate a personalized

policy recommendations for potential customers. If the LLM has learned of bias
or inaccuracies in its data, it may produce recommendations, which could lead
clients to purchase inadequate coverage or be unfairly charged higher premiums.

Organizations can take certain steps to address ethical concerns regarding
machine learning models. For instance, they can invest in techniques to detect
and decrease bias, as well as use algorithms to minimize bias in model outputs.
Other strategies include anonymizing and pre-processing training data to re-
move private information and protecting the privacy of individuals in datasets,
implementing content filtering mechanisms to avoid improper text generation,
and continuously evaluating the outcomes to ensure ethical standards are met.
Moreover, it is recommended that organizations clearly explain the significant
drawbacks and risks of machine learning models to stakeholders and establish
procedures to guarantee accountability for model decisions.

And finally let’s explain the last limitation of LLMs.

e) Computational resources

Training and adjusting large language models is a process that requires a lot of
computer power and memory. These models are made up of millions or even
billions of parameters, which makes it take a long time to train, adjust, and use
them. This can be hard for small organizations, startups, or people with few
resources, particularly when creating custom models for specific applications,
like the insurance industry..

Additionally, the energy consumption associated with training and fine-
tuning LLMs raises environmental concerns, as the carbon footprint of training
these models can be substantial.

10

ISFA - Year 2022-2023 M1ES - LLMs project

Example:
A small insurance company needs help processing insurance claims with

technology. However, they may not have the budget or technical skills to use
complex models such as GPT-2 or Bloom. Because of this, they may struggle
to fully benefit from advanced language models for their specific needs.

To deal with the problem of not having enough computer power, organi-
zations can consider a variety of methods. Firstly, they can use smaller and
more efficient models that won’t need as many resources to train, fine-tune,
and operate. Additionally, organizations can save time and resources by using
pre-trained models and fine-tuning them to their specific domain. Cloud-based
machine learning platforms and services are another option. Organizations can
use these platforms and services which gives access to the required computa-
tional resources on a pay-as-you-go basis. Lastly, smaller businesses can partner
with research institutions, or technology partners if they don’t have the required
resources or expertise to develop and deploy LLMs.

For our insurance training, we chose GPT-2 over Llama and Bloom because
it has superior pre-trained models, is versatile for fine-tuning, and has shown
success in various natural language processing applications. Even though Llama
offers more flexibility and Bloom is more efficient, we found that GPT-2’s per-
formance and adaptability make it a better choice for insurance-related tasks.

Now that we’ve gone into the complexities of huge language models and
their limits in Section 2, we can apply what we’ve learned to create a specific
solution for the insurance sector. In Section 3, we will focus on developing a
custom-trained model for insurance applications, using the strength of GPT-2
while reducing its limits to create a highly effective tool tailored to the insurance
sector’s specific demands.

11

ISFA - Year 2022-2023 M1ES - LLMs project

III) Our custom-train model using GPT-2
In this part, we are going to make an example with our custom-train model
based on GPT-2 to see if the model can be used to make useful things. We
coded the model with the help of the Python language.

1) Base of our project
a) The workspace

Firstly, we needed a workspace to train our model. The problem was that LLMs
use a lot of power especially with a graphic card. Our own computers weren’t
powerful enought to run the model, so we created a Google Colab notebook.
The main advantage is that we can use the more powerful GPU (Graphic card)
the notebook provides to use it on our model.

The specifications of the notebook are the following:

• Processor: Intel Xeon 2.2 GHZ

• Graphic card: Nvidia Tesla T4 16 GB

• Memory: 12 GB

• Disk memory: 78 GB

The second thing is that we don’t need to install extra softwares like ipython
because everything is already installed. The link for the notebook is included
in the reference tab.

b) The model

To fine-tune GPT-2, we chose GPT-2 simple. It is a Python package that makes
it easy to fine-tune and generate text from GPT-2, and that works best with the
“small” version of 124M parameters. It also allows to generate text to a file for
easy curation, and to use prefixes to force the text to start with a given phrase.
gpt-2-simple allows you to generate texts in parallel by setting a batch_size
that is divisible into nsamples, resulting in much faster generation. The link is
available in the references.

12

ISFA - Year 2022-2023 M1ES - LLMs project

2) Starting point
In this section, we are begin to talk about the Python’s commands we use to
define our project. We are going to explain in precision each command.

a) Installation

First we need to install the model. We are going to use the following command:

!pip install gpt-2-simple

This command is used to install the gpt-2-simple Python package.

• The ! at the beginning is used to run a shell command from Google Colab.

• The pip command is a package manager for Python that allows you to
install and manage packages.

• The install arguments tells pip to install the specified package, in this
case gpt-2-simple.

After that, we are going to rename gpt-2-simple to gpt2 with next the com-
mand to simplify the following steps :

import gpt_2_simple as gpt2

Where import means that it imports the gpt-2-simple module and gives it
the alias gpt2.

Next, we will download the model:

gpt2.download_gpt2(model_name="124M")

This command downloads the GPT-2 model with 124 million parameters into
our Google Colab notebook. This is a pre-trained language model that can
be tuned for a specific task or used to generate text. This is why we have
model_name="124M". The pre-trained data weights around 498 MB.

The data we have downloaded are stored inside the \content folder of our
Google Colab. There are 2 folders inside it:

• models: This is where the GPT-2 pre-trained model is stored.

• sample_data: This is some sample of data that the model has downloaded
(we can ignore it).

13

ISFA - Year 2022-2023 M1ES - LLMs project

b) Sample to fine-tune

Now that we have downloaded the GPT-2 simple model, we are going to initialize
it.

We select a text file (.pdf, .txt, etc. . .), convert it to a .txt format because
GPT-2 only supports this format for fine-tuning. Then, we upload it to the
Google Colab workspace and we run the following command:

file_name = "Example.txt"

This code assigns the text name in the workspace Example.txt to a variable
called file_name. We do this to make it easier to use this variable for the next
section.

3) Fine-tuning our sample
a) Initialization

In this third part, we are going to initialize the fine-tuning model with the
following set of commands:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = gpt2.start_tf_sess()
gpt2.finetune(sess,

dataset=file_name,
model_name="124M",
steps="",
restore_from="fresh",
run_name="example",
print_every="",
sample_every="",
save_every="",
only_train_transformer_layers = True,

accumulate_gradients = 1,
)

The first two lines were added because we had an error, it will be explained
later in the part where we talked about the issues.

from tensorflow.python.framework import ops

This line imports the ops module from the tensorflow.python.framework
package. The ops module includes implementations of classes like tf.Graph,
tf.Tensor and tf.Operation.

14

ISFA - Year 2022-2023 M1ES - LLMs project

ops.reset_default_graph()

This line resets the default computational graph used by TensorFlow. This
is useful if we want to create a new graph from scratch.

sess = gpt2.start_tf_sess()

This line creates a new TensorFlow session using the start_tf_sess func-
tion from the gpt2 module and assigns it to the variable sess.

We are now going to see what the gpt2.finetune function is going to do:

gpt2.finetune(sess,...)

The first line fine-tunes the GPT-2 model on a specific dataset using the finetune
function from the gpt2 module with the sess variable.

The following parameters we used for this function are:

• dataset=file_name: This specifies the dataset to use for fine-tuning. In
this case, it is set to the precedent value file_name, which should contains
the name of a text file.

• model_name="124": This specifies which version of the GPT-2 model to
use. In this case, it is set to "124M", which corresponds to the version of
the GPT-2 model with 124 million parameters.

• steps="": This specifies how many steps (iterations) to perform during
fine-tuning. The higher the number of steps is, the better the quality of
the model is.

• restore_from="fresh": This specifies whether to start fine-tuning from
scratch or to restore from a previous checkpoint. In this case, it is set to
"fresh", which means that fine-tuning will start from scratch.

• run_name="example": This specifies a name for this fine-tuning run. It
can be used to distinguish between fine-tuning runs.

• print_every="": This specifies how often (in terms of steps) to print
progress information during fine-tuning.

• sample_every="": This specifies how often (again in terms of steps) to
generate text samples during fine-tuning. It means that it will print every
number of steps you specified.

• save_every ="": This specifies how often to save a checkpoint during
fine-tuning. You can run a model again with a specified checkpoint.

• only_train_transformer = True: This specifies whether only transformer
layers should be trained during fine-tuning or not.

• accumulate_gradients = 1: This specifies how many gradients should
be accumulated before updating model parameters.

15

ISFA - Year 2022-2023 M1ES - LLMs project

We can execute the commands after setting the parameters. The execution
time will be longer if the sample is larger or if we use powerful parameters like
steps=1000 for instance.

Afterward, we are going to have our fine-tuned checkpoint. We can generate
now a random sample with this command:

gpt2.generate(sess, run_name="example")

Where example is our checkpoint we trained previously.

b) Generate a text with our checkpoint

We can add those following parameters to generate a better and a more custom
sample within the gpt2.generate function:

gpt2.generate(sess,
run_name="example"
length="",
temperature="",
prefix="",
nsamples="",
batch_size="",
top_k= ""
)

• gpt2.generate(sess: This line calls the generate function of the gpt2
object with sess as the first argument. sess is the previous TensorFlow
session that contains information about our trained model.

• run_name="example": The checkpoint you want to use for generating
sample.

• lenght="": This line sets the maximum length of the generated text in
number of tokens. The maximum number you can generate with GPT-2
is about 1023 tokens.

• temperature="": This line sets the temperature for sampling during text
generation. A higher temperature can result in more diverse but less
coherent results. A lower temperature can result in less diverse but more
coherent and repetitive results. The default value of GPT-2 is 1.

16

ISFA - Year 2022-2023 M1ES - LLMs project

• prefix="": This line sets the prefix for the generated text. The model
will start generating text with the context from this prefix.

• nsample="": This line sets the number of text samples to generate, if you
set this line to 10 for example, you will get 10 lines with different outputs.
The default value sets by GPT-2 is 1.

• batch_size="": This line sets the batch size for text generation. This
means that the model will generate a number of samples given at a time
until the total number of samples specified by nsamples is reached.

• top_k=“”: This line chooses how many possible words to look at when
picking the next word. It will only look at the top_k most likely words
for the next one.

We can use the model to create a new text and check our result, then test
different samples to finish our analysis.

4) Results of the different samples
In this part, we will look at different results with the first chapter of the first
Harry Potter book, the whole book of the first Harry Potter (to test our model’s
limits) and a financial report about a company called Workiva Inc. that is partly
related to the insurance domain.

a) Sample 1: First chapter of Harry Potter and the Sorcerer’s
stone

We picked this example because Harry Potter’s books are often used for fine-
tuning test models, especially the first one. Harry Potter and the Sorcerer’s
stone is a fantasy book from 1997 by the author JK.Rowling (all rights belong
to the original author of this book).

Firstly, we are going to import the text sample with this command:

file_name = "HP-GPT2.txt"

Next, we set those commands with the following parameters like this:

gpt2.finetune(sess,
dataset=file_name,
model_name="124M",
steps="100",
restore_from="fresh",
run_name="run1",
print_every="10",
sample_every="10",
save_every="10",
only_train_transformer_layers = True,

accumulate_gradients = 1,
)

17

ISFA - Year 2022-2023 M1ES - LLMs project

The model took about 3 minutes to create with those parameters. Next, we will
use these parameters to make a sample:

gpt2.generate(sess,
length=200,
run_name="run1",
temperature=0.7,
prefix="Harry potter is in danger",
nsamples=10,
batch_size=10,
top_k= 10
)

(We will adjust temperature to check if the text changes in content)

We chose the temperature to be 0.7 because it balances creativity and fidelity
and it is the default recommendation. The sample was generated in about 7
seconds, which is quicker than the part when we trained our model.

Now for the analysis, we got a generated text with 200 tokens (The text is
link in a github collection of our results in the biography table). When we set
the temperature to 0.7, we get a fairly coherent text in terms of form. However,
we can already see that there are repetitions of special characters such as "-"
for example, or the repetition of certain words or phrases:

"Professor McGonagall opened her mouth, changed her mind,
swallowed, and said, Yes, youd be certain, said Dumbledore.

Professor McGonagall opened her mouth, changed her mind,
swallowed, and said, Yes, youd be certain"

In terms of coherence, GPT-2 has trouble maintaining context. For example,
in a paragraph, the text tells us that the hero goes to prison because of a theft
committed by himself, which has no connection with the first chapter of this
book.

When we set the temperature to 0.2 this time, the first thing that catches
the eye is the repetitive presence of the same paragraph:

"Professor McGonagall pulled out a lace handkerchief and dabbed
at her eyes beneath her spectacles. Dumbledore gave a great
sni as he took a golden watch from his pocket and examined it
. It was a very odd watch. It had twelve hands but no numbers
; instead, little planets were moving around the edge. It
made no sense to Dumbledore"

18

ISFA - Year 2022-2023 M1ES - LLMs project

As the model is limited in originality and the text is not very long, it is unable
to choose another paragraph so it is limited to repeating another sample that
comes out. Otherwise, the generated text relies heavily on the original, even if
the logic behind is not present.

b) Sample 2: The entire book of Harry Potter and the Sorcerer’s
stone

We will use the whole book this time because we wanted to test if the model
can handle big text data. We will keep the same parameters as the previous
generation. The only thing we will change is this line:

file_name = "HPFull-GPT2.txt"

This is because we use another text sample which contains the full book.

run_name="run2",

We use another run name because the first one was already chosen from our
previous generation.

gpt2.generate(sess,
lenght=200,
run_name="run2",
[...]
)

And also this one.

The training session took around 3 minutes, so we can conclude that the
number of tokens from the text doesn’t affect much the training time.

For generating a new sample, we are going to also use the previous parame-
ters with the same prefix="Harry potter is in danger".

We will just do a quick analysis to see if GPT-2 has any issues with the
interpretation of large text corpora. When we set the temperature to 0.7, we
observe on one hand that the model generates repetitions in some cases, like
with the character "" for example. The text appears coherent overall even
if the generated story does not have a common thread. However, when the
temperature is set to 0.2, the repetitions come back as in sample 1. We can see
it here in particular:

19

ISFA - Year 2022-2023 M1ES - LLMs project

"I’m not going to Hogwarts, I’m not going to Hogwarts, I’m not
going to Hogwarts, I’m not going to Hogwarts, I’m not going
to Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts, I’m not going to
Hogwarts, I’m not going to Hogwarts,"

Or here:

"He’s in trouble, Harry," said Ron. "He’s got a wand, he’s got a
curse, he’s got a curse, he’s got a curse, he’s got a curse,
he’s got a curse, he’s got a curse, he’s got a curse, he’s
got a curse, he’s got a curse, he’s got a curse, he’s got a
curse, he’s got a curse, he’s got a curse, he’s got a curse,
he’s got a curse, he’s got a curse, he’s got a curse, he’s
got a curse, he’s got a curse, he’s got a curse, he’s got a
curse, he’s got a curse, he’s got a curse, he’s got a curse,
he’s got a curse, he’s got a curse, he’s got a curse, he’s
got a curse, he’s got a curse, he’s got a curse"

The model seems quite confused. It appears that it is unable to generate new
sentences and is content with repeating the same ones in a loop.

In conclusion, GPT-2 doesn’t seems to have difficulty to generate new sam-
ples from a larger text document.

With this successful "stress-test", we can now analyse the main aspect of
our subject: a financial report which is linked to insurance.

20

ISFA - Year 2022-2023 M1ES - LLMs project

c) Sample 3: Workiva Inc.’s financial report from 2021

The main goal in this part is to see if people can make predictions with LLMs
such as GPT-2.

This is a financial report from a firm named Workiva Inc. which is dated
from 2021. We use it because it has multiple pros:

• Good and trustworthy data: Workiva Inc.’s financial reporting software
has correct and current financial data (at the time of this project is made),
which makes it a good dataset for fine-tuning GPT-2.

• Knowledge about the industry: A financial report from Workiva Inc.
would have useful information and insights about the financial industry,
which could help GPT-2 make better predictions about insurance data .

• Easy collaboration and data sharing: Workiva Inc.’s platform lets people
work together and share data easily, which can be helpful when working
with GPT-2 models .

• Correctness and confidence: Workiva Inc.’s platform connects financial
data from different sources, lowering human error and increasing data
reliability. This can lead to better predictions from the GPT-2 model.

But also couple of cons:

• Narrow range: A financial report from Workiva Inc. would have useful
information about the financial industry, but it might not include all parts
of insurance data. The model might need more fine-tuning with more
varied and complete datasets (if you need to make accurate predictions).

• Old data: Using a financial report from 2021 might not give the most
current information for making predictions about insurance data. It’s
important to think about the importance and freshness of the data when
fine-tuning the GPT-2 model.

• Data from others: Workiva Inc.’s financial reports may have information
from other sources (like Deloitte tool for example), which could affect the
correctness and dependability of the data investor. It’s important to check
the quality and trustworthiness of the data before using it for fine-tuning
the GPT-2 model.

21

ISFA - Year 2022-2023 M1ES - LLMs project

Presentation of Workiva Inc. and what is its link to insurance:

Workiva Inc. is a cloud-based platform that transforms the way people
manage and report data, with a mission to power transparent reporting
for a better world. The platform is used by thousands of organizations
worldwide, including 85 percent of the Fortune 500, to streamline pro-
cesses, connect data and teams, and simplify complex work.

In the insurance domain, Workiva Inc. streamlines complex insurance
reporting, including statutory and financial reporting, risk management,
and regulatory compliance across all lines of business. The platform can
be used for financial and insurance statutory reporting, Long Duration
Targeted Improvements (LDTI), actuarial opinions or actuarial memo-
randums, Model Audit Rule (MAR) compliance, and IFRS requirements.

By connecting data, documents, and teams, Workiva Inc. simplifies com-
pliance with regulatory requirements such as Solvency II and ORSA, and
can be used to produce actuarial opinions or an actuarial memorandum
and manage LDTI.

The original report was in .pdf format, so we scrap the text inside it
manually (there were a couple of graphics inside, but we didn’t need them).
The .txt file is named Finance-GPT2.txt.

We use the following parameters to set up the model:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = gpt2.start_tf_sess()
gpt2.finetune(sess,

dataset=file_name,
model_name="124M",
steps="1000",
restore_from="fresh",
run_name="run3",
print_every="10",
sample_every="10",
save_every="10",
only_train_transformer_layers = True,

accumulate_gradients = 1,
)

We have steps=1000 because the text has 695 lines in total and it will
generate a better sample using more steps (and take much longer time to
generate).

22

ISFA - Year 2022-2023 M1ES - LLMs project

It took about 30 minutes to train the text, which is very long but we have
to keep in mind that we are limited by the hardware, so it’s normal for
our case. Next, we will create the text with these parameters:

gpt2.generate(sess,
run_name="run3",
length="1023",
temperature="",
prefix="Prediction for 2023",
nsamples="3",
batch_size="3",
top_k="40"
)

We choose length=1023 because we wanted to the see what the maxi-
mum number of tokens we can get per sample. We are going to generate
3 different ones : one with temperature=1, one with temperature=0.2
and one with temperature=0.5 (we generate 3 different samples within
the sample, this is why we have nsamples=3):

– When we set the temperature to 1, the text is quite faithful to the
original one. It even came to complete one of the main titles by
adding "- 2025". Indeed, at this temperature, the text has a great
deal of freedom to form new sentences and new words. However,
from a financial and scientific point of view, this text does not really
have any value because it only repeats absurd words. There are also
certain terms that are misinterpreted as squares, for example. We
can also see that GPT-2 has generated the beginnings of a list, par-
ticularly in the second paragraph from 7 to 10. We also have some
<|endoftext|> that appear suddenly at certain points.

– When we set the temperature to 0.2, we can see that the text is much
more constrained than when we set the temperature to 1. There
are also many repetitions because GPT-2 is more constrained in the
choice of words, especially with words such as ’We have not been’
followed by pre-fabricated sentences. This is particularly the case
here with sentences where it becomes confusing by repeating the
same thing:

23

ISFA - Year 2022-2023 M1ES - LLMs project

"Stock Performance Graph. The following shall not be
deemed incorporated by reference into any of our
other filings under the Exchange Act or the
Securities Act.

Stock Performance Graph. The following shall not be
deemed incorporated by reference into any of our
other filings under the Exchange Act or the
Securities Act.

Stock Performance Graph. The following shall not be
deemed incorporated by reference into any of our
other filings under the Exchange Act or the
Securities Act.

[...]"

It also uses lists repeatedly, which shows that it closely follows the
original document that also has lists. It again increases the title list
like this:

"9. Fair Value of Financial Instruments
[...]
10. Fair Value of Financial Instruments"

Otherwise, it has generated a coherent text in form but without a
serious meaning in substance.

– Finally, when we set the temperature to 0.5, we can see that there
are no major drawbacks. The text is quite readable and coherent in
form. There are still some repetitions, but they are far less noticeable
than when the temperature is set to 0.2 or 1. This temperature choice
could be ideal for a mix of both, on a one side, to make the text more
creative, and on the other side, to inspire it from the original text.

With these 3 predefined temperatures, we can see that we have quite
different results. If the temperature is close to 1, then the model will
generate a more creative sample while if the temperature is close to 0,
then the model will generate text close to the original one, therefore more
limited. Note that we can also adjust other parameters such as top_k to
have different results but we are staying in a simple case study.

24

ISFA - Year 2022-2023 M1ES - LLMs project

We can summarize our analysis into the following table:

Table 2: Advantages and Disadvantages
Advantages Disadvantages

- Easy to install - Too repetitive when the tempera-
ture is low

- Can be run on a local machine - Not very coherent

- Can analyse huge chunks of text - Slow when you have a high number
of steps to generate sample

- Good to generate creative content - Outdated compared to other
LLMs

- Lightweight - Not good for professional stuff (like
prevision)

- Privacy concerns - Can require a lot of power for other
parameters

- Hallucinate words and sentences

Although GPT-2 is a good language model, it is not the best one available
on the market.

You can see the final samples for each three at this address:
https://github.com/AverageCoder69/TER_project_ISFA

25

ISFA - Year 2022-2023 M1ES - LLMs project

5) Issues with the process

At first, we selected the model with 365 million parameters because more
parameters make the model more accurate and effective.

But we had a problem with it. In fact, gpt-2-simple was not optimized
for this kind of parameters and secondly, the model took a lot of video
ram and threw this error:

"ValueError: Variable model/wpe already exists, disallowed.
Did you mean to set reuse=True or reuse=tf.AUTO_REUSE
in VarScope?"

This error is occurring because the variable "model/wpe" already exists
and cannot be created again. There are two solutions against this prob-
lem, either set "reuse=True" or "reuse=tf.AUTO_REUSE" in the variable
scope.

But none of those solutions work for us. We decided to use these following
lines of commands to correct the problem:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = gpt2.start_tf_sess()

As we said, the first line imports the ops module from the tensorflow.py-
thon.framework package. The ops module provides a collection of func-
tions that are used to construct TensorFlow graphs. The second line resets
the default TensorFlow graph. This is useful when working with multiple
graphs in the same program or notebook. The third line starts a new
TensorFlow session using the gpt2.start_tf_sess() function. The gpt2
module provides an implementation of the GPT-2 language generation
model.

26

ISFA - Year 2022-2023 M1ES - LLMs project

IV) Conclusion

Our project aimed to test the possibility of using a pre-trained LLM,
namely GPT-2, to create new samples that were fine-tuned with existing
data. We managed to produce a “prediction” from a financial report about
the insurance domain.

But it was not very good. There were many false statements, the text
sometimes lacked coherence and there were also some repetitions. LLMs
can be very useful but also can be ineffective for some tasks.

It is important to note that while GPT-2 was a competent LLM when it
was launched in 2019, it is now considered outdated compared to other
LLMs such as GPT-3 and GPT-4. However, these newer models require a
lot of computational power to run since they have significantly more pa-
rameters than GPT-2, with GPT-3 having around 175 billion parameters,
which is 1,411 times larger than GPT-2’s 124 million parameters.

As of now, it is challenging to make predictions about the future of LLMs
in the insurance domain. However, based on current trends and recent
developments, we can make some assumptions about what the future may
hold. LL.M. programs in Europe, for instance, have adapted to generative
AI, and students are expected to have knowledge about this technology to
succeed in their future careers. Therefore, it is safe to assume that LLM
programs may continue to evolve to include more advanced technology
and data analysis.

Furthermore, a recent study by MIT researchers developed a system that
directly integrates prediction functionality on top of an existing time-series
database, which is more accurate and efficient than state-of-the-art deep
learning methods when performing two tasks: predicting future values and
filling in missing data points (This works especially for medical research).
This indicates that the use of machine learning and data analysis may be-
come more prevalent in the legal industry, including the insurance domain.

This project allowed us to learn a little more about LLMs and their func-
tioning. The use of a (certainly limited) LLM on a local machine allowed
us to see that the computing power required to run them is not necessarily
huge. However, the level of quality of the outputs is not as good as that of
the more powerful LLMs (e.g., GPT-4). Nevertheless, by the future out-
come, thanks to technological advancements, we can hope to run bigger
models on local machines.

27

ISFA - Year 2022-2023 M1ES - LLMs project

References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you
need. In Advances in neural information processing systems (pp.
5998-6008). https://arxiv.org/abs/1706.03762

[2] Radford, A., Narasimhan, K., Salimans, T., & Sutskever,
I. (2018). Improving language understanding by generative
pre-training. https://cdn.openai.com/research-covers/
language-unsupervised/language_understanding_paper.pdf

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever,
I. (2019). Language models are unsupervised multitask learners.
https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf

[4] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot
learners. https://arxiv.org/abs/2005.14165

[5] Jay Alammar’s blog post on "The Illustrated Transformer":
http://jalammar.github.io/illustrated-transformer/

[6] Lilian Weng’s blog post on "Attention? Attention!":
https://lilianweng.github.io/lil-log/2018/06/24/
attention-attention.html

[7] Llama GitHub repository: https://github.com/22-22/llama

[8] Attention is All You Need: https://arxiv.org/abs/1706.03762

[9] Hugging Face, 2023 , Custom Datasets. https://huggingface.co/
docs/transformers/custom_datasets.html

[10] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I.,
& Abbeel, P. (2017). Inferring and Executing Programs for Visual
Reasoning. In Advances in Neural Information Processing Systems
30 (NIPS 2017). https://papers.nips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf

References

ISFA - Year 2022-2023 M1ES - LLMs project

[11] Bender, Emily M., et al. "On the dangers of stochastic parrots:
Can language models be too big?." Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency. 2021.

[12] gpt-2-simple. (2021). Python package to easily retrain Ope-
nAI’s GPT-2 text-generating model on new texts. https:
//pypi.org/project/gpt-2-simple/

[13] Stack Overflow. (2018). What’s ops from ten-
sorflow.python.framework for ? Retrieved from
https://stackoverflow.com/questions/50772746/
whats-ops-from-tensorflow-python-framework-for

[14] Workiva Inc. Insurance Solutions. Retrieved from https:
//www.workiva.com/solutions/insurance

[15] Workiva Inc. About Us. Retrieved from https://www.workiva.
com/about

[16] ProgrammingHut. (2020, September 25). GPT2 fine tuning |
gpt2 text generation | harry potter novel generation gpt2 [Video].
YouTube. Retrieved from https://www.youtube.com/watch?v=
DNLebQ_vYiw

[17] MIT School of Engineering. (2022, March 22). A tool for predicting
the future. MIT News/Adam Zewe. Retrieved from https://
computing.mit.edu/news/a-tool-for-predicting-the-future/

[18] Stack Overflow. (2020, February 6). GPT-2 Con-
tinue training from checkpoint - python. Retrieved
from https://stackoverflow.com/questions/60097717/
gpt-2-continue-training-from-checkpoint

[19] Stack Overflow. (2016, November 24). AttributeError: module
’tensorflow’ has no attribute ’reset_default_graph’. Re-
trieved from https://stackoverflow.com/questions/40782271/
attributeerror-module-tensorflow-has-no-attribute-reset
-default-graph

[20] Workiva, Inc. (2021). 2021 Annual Report. Retrieved, from
https://s21.q4cdn.com/997645077/files/doc_financials/
2021/ar/2021_10_K_and_AR-(1).pdf

References

ISFA - Year 2022-2023 M1ES - LLMs project

[21] P.Nunes (2022), The Impact of Large Language Models
in Insurance https://www.twoimpulse.com/en/insights/
large-language-models-insurance

[22] SaaSGenius. (March, 2023). Workiva Reviews. Retrieved, from
https://www.saasgenius.com/reviews/workiva/

[23] Deloitte. (2022, May 11). Deloitte Launches New ESG Ac-
celerators for Workiva Platform Users Working To Es-
tablish or Enhance Accounting, Financial and Regulatory
Reporting. Retrieved from https://www2.deloitte.com/
us/en/pages/about-deloitte/articles/press-releases/
deloitte-launches-new-esg-accelerators-for-workiva-platf
orm-users-working-to-establish-or-enhance-accounting-fin
ancial-and-regulatory-reporting.html

[24] Jk. Rowling. (1997, June 27). Harry Potter and the Sorcerer’s Stone
[US]. Harry Potter and the Philosopher’s stone [UK]. Fantasy book.

[25] The Google Colab : https://colab.research.google.com/drive/
12onOmgj9FVcSncGAgJN9b2vv9medYTfj?usp=sharing

[26] The GitHub repository : https://github.com/AverageCoder69/
TER_project_ISFA

References

ISFA - Year 2022-2023 M1ES - LLMs project

Annex content
What were the roles of the authors?

Esther and Mohamad were in charge of the theoretical analysis of large-
scale language models (LLMs) to compare them and assess their use in the
insurance industry. They began by defining what an LLM is and explain-
ing why it is useful in the field of insurance. They then briefly studied the
underlying mathematics of LLMs, referring to "Attention is All You Need"
by Vaswani et al. (https://arxiv.org/abs/1706.03762) and the Illustrated
Transformer by Jay Alammar (http://jalammar.github.io/illustrated-tran
sformer/) which consist of 10 main steps. Once this was completed, they
were ready to compare the GPT-2, Llama, and Bloom models.

Taking into account the various factors and characteristics of each model,
they concluded that GPT-2 was the preferred choice for their study. They
also examined the Llama model using its GitHub repository as a primary
source of information. Finally, they addressed the limitations of LLMs, re-
ferring to the paper "On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big?" by Bender et al. (2021), and discussed potential so-
lutions to overcome these challenges.

Jérémy, for his part, was in charge of developing the different models on
Google Colab. He arranged the Google Colab to put the code to train
the texts. He then analyzed the three texts generated below to try to
understand what GPT-2 tried to generate. He also detected errors in the
code and tried to correct them and made a report. He also participated
in the elaboration of the conclusion with Mohamad and Esther, including
an opening sentence on the future of LLMs.

Annex

